14 research outputs found

    Model-Based Identification of Anatomical Boundary Conditions in Living Tissues

    Get PDF
    International audienceIn this paper, we present a novel method dealing with the identification of boundary conditions of a deformable organ, a particularly important step for the creation of patient-specific biomechani-cal models of the anatomy. As an input, the method requires a set of scans acquired in different body positions. Using constraint-based finite element simulation, the method registers the two data sets by solving an optimization problem minimizing the energy of the deformable body while satisfying the constraints located on the surface of the registered organ. Once the equilibrium of the simulation is attained (i.e. the organ registration is computed), the surface forces needed to satisfy the constraints provide a reliable estimation of location, direction and magnitude of boundary conditions applied to the object in the deformed position. The method is evaluated on two abdominal CT scans of a pig acquired in flank and supine positions. We demonstrate that while computing a physically admissible registration of the liver, the resulting constraint forces applied to the surface of the liver strongly correlate with the location of the anatomical boundary conditions (such as contacts with bones and other organs) that are visually identified in the CT images

    Fast reconstruction of image deformation field using radial basis function

    Get PDF
    International audienceFast and accurate registration of image data is a key component of computer-aided medical image analysis. Instead of performing the registration directly on the input images, many algorithms compute the transformation using a sparse representation extracted from the original data. However, in order to apply the resulting transformation onto the original images, a dense deformation field has to be reconstructed using a suitable inter-/extra-polation technique. In this paper, we employ the radial basis function (RBF) to reconstruct the dense deformation field from a sparse transformation computed by a model-based registration. Various kernels are tested using different scenario. The dense deformation field is used to warp the source image and compare it quantitatively to the target image using two different metrics. Moreover, the influence of the number and distribution of the control points required by the RBF is studied via two different scenarios. Beside the accuracy, the performance of the method accelerated using a GPU is reported

    The effect of discretization on parameter identification. Application to patient-specific simulations

    Get PDF
    International audienceIdentifying the elastic parameters of a finite element model from a dynamically acquired set of observations is a fundamental challenge in many data-driven medical applications going from soft surgical robotics to image-guided per-operative simulations. While various strategies exist to tackle the parameter-identification inverse problem [Aster et al., 2013], the effect of sub-optimal discretization, as often required in real-time applications, is largely overlooked. Indeed, the need to tune the parameter values in order to account for discretization-induced stiffening in specific models is reported in different works (e.g. [Chen et al., 2015, Anna et al., 2018]). However, to the best of our knowledge, no systematic study of this phenomenon exists to date, nor has any strategy to select optimal effective values been developed. Our work addresses the issue of parameter identification in coarsened meshes with special attention to the dynamical nature of the identification. We focus on the estimation of Young's moduli in simplified systems and show that the estimated stiffnesses are underestimated in a systematic manner when reducing the number of degrees of freedom. We also show that the effective stiffness of a given coarse mesh, when associated with an undersampled mesh discretization, is not constant but strongly depends on the prescribed deformations. These results show that the estimated parameters should not be considered as the true parameter value of the organ or tissue but instead are model-dependent values. We argue that Bayesian methods present a clear advantage w.r.t. classical minimization methods by their ability to efficiently adapt the local parameter values

    Preoperative trajectory planning for percutaneous procedures in deformable environments

    Get PDF
    International audienceIn image-guided percutaneous interventions, a precise planning of the needle path is a key factor to a successful intervention. In this paper we propose a novel method for computing a patient-specific optimal path for such interventions, accounting for both the deformation of the needle and soft tissues due to the insertion of the needle in the body. To achieve this objective, we propose an optimization method for estimating preoperatively a curved trajectory allowing to reach a target even in the case of tissue motion and needle bending. Needle insertions are simulated and regarded as evaluations of the objective function by the iterative planning process. In order to test the planning algorithm, it is coupled with a fast needle insertion simulation involving a flexible needle model and soft tissue finite element modeling, and experimented on the use-case of thermal ablation of liver tumors. Our algorithm has been successfully tested on twelve datasets of patient-specific geometries. Fast convergence to the actual optimal solution has been shown. This method is designed to be adapted to a wide range of percutaneous interventions

    Position-based modeling of lesion displacement in Ultrasound-guided breast biopsy

    Get PDF
    International audiencePurpose Although ultrasound (US) images represent the most popular modality for guiding breast biopsy, malignant regions are often missed by sonography, thus preventing accurate lesion localization which is essential for a successful procedure. Biomechanical models can support the localization of suspicious areas identified on a pre-operative image during US scanning since they are able to account for anatomical deformations resulting from US probe pressure. We propose a deformation model which relies on position-based dynamics (PBD) approach to predict the displacement of internal targets induced by probe interaction during US acquisition. Methods The PBD implementation available in NVIDIA FleX is exploited to create an anatomical model capable of deforming online. Simulation parameters are initialized on a calibration phantom under different levels of probe-induced deformations, then they are fine-tuned by minimizing the localization error of a US-visible landmark of a realistic breast phantom. The updated model is used to estimate the displacement of other internal lesions due to probe-tissue interaction. Results The localization error obtained when applying the PBD model remains below 11 mm for all the tumors even for input displacements in the order of 30 mm. This proposed method obtains results aligned with FE models with faster computational performance, suitable for real-time applications. In addition, it outperforms rigid model used to track lesion position in US-guided breast biopsies, at least halving the localization error for all the displacement ranges considered. 2 Eleonora Tagliabue et al. Conclusions Position-based dynamics approach has proved to be successful in modeling breast tissue deformations during US acquisition. Its stability, accuracy and real-time performance make such model suitable for tracking lesions displacement during US-guided breast biopsy

    Haptically driven travelling through conformational space

    No full text
    is permitted for educational or research use on condition that this copyright notice is included in any copy. Publications in the FI MU Report Series are in general accessible via WWW: Further information can obtained by contacting
    corecore